Avoidance of axonal stimulation with sinusoidal epiretinal stimulation

Author:

Corna AndreaORCID,Cojocaru Andreea-ElenaORCID,Bui Mai Thu,Werginz PaulORCID,Zeck GüntherORCID

Abstract

Abstract Objective. Neuromodulation, particularly electrical stimulation, necessitates high spatial resolution to achieve artificial vision with high acuity. In epiretinal implants, this is hindered by the undesired activation of distal axons. Here, we investigate focal and axonal activation of retinal ganglion cells (RGCs) in epiretinal configuration for different sinusoidal stimulation frequencies. Approach. RGC responses to epiretinal sinusoidal stimulation at frequencies between 40 and 100 Hz were tested in ex-vivo photoreceptor degenerated (rd10) isolated retinae. Experiments were conducted using a high-density CMOS-based microelectrode array, which allows to localize RGC cell bodies and axons at high spatial resolution. Main results. We report current and charge density thresholds for focal and distal axon activation at stimulation frequencies of 40, 60, 80, and 100 Hz for an electrode size with an effective area of 0.01 mm2. Activation of distal axons is avoided up to a stimulation amplitude of 0.23 µA (corresponding to 17.3 µC cm−2) at 40 Hz and up to a stimulation amplitude of 0.28 µA (14.8 µC cm−2) at 60 Hz. The threshold ratio between focal and axonal activation increases from 1.1 for 100 Hz up to 1.6 for 60 Hz, while at 40 Hz stimulation frequency, almost no axonal responses were detected in the tested intensity range. With the use of synaptic blockers, we demonstrate the underlying direct activation mechanism of the ganglion cells. Finally, using high-resolution electrical imaging and label-free electrophysiological axon tracking, we demonstrate the extent of activation in axon bundles. Significance. Our results can be exploited to define a spatially selective stimulation strategy avoiding axonal activation in future retinal implants, thereby solving one of the major limitations of artificial vision. The results may be extended to other fields of neuroprosthetics to achieve selective focal electrical stimulation.

Funder

European Union’s Horizon 2020 research and innovation programme Entrain Vision under the Marie Skłodowska-Curie

Hochschuljubiläumsfonds der Stadt Wien

Austrian Science Fund

Publisher

IOP Publishing

Reference63 articles.

1. An update on retinal prostheses;Ayton;Clin. Neurophysiol.,2020

2. The functional diversity of retinal ganglion cells in the mouse;Baden;Nature,2016

3. Factors affecting perceptual thresholds in epiretinal prostheses;Balthasar;Invest. Ophthalmol. Vis. Sci.,2008

4. A CMOS-based sensor array for in-vitro neural tissue interfacing with 4225 recording sites and 1024 stimulation sites;Bertotti,2014

5. A model of ganglion axon pathways accounts for percepts elicited by retinal implants;Beyeler;Sci. Rep.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Engineering an in vitro retinothalamic nerve model;Frontiers in Neuroscience;2024-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3