EEG-based hierarchical classification of level of demand and modality of auditory and visual sensory processing

Author:

Massaeli FaghiheORCID,Power Sarah DORCID

Abstract

Abstract Objective. To date, most research on electroencephalography (EEG)-based mental workload detection for passive brain-computer interface (pBCI) applications has focused on identifying the overall level of cognitive resources required, such as whether the workload is high or low. We propose, however, that being able to determine the specific type of cognitive resources being used, such as visual or auditory, would also be useful. This would enable the pBCI to take more appropriate action to reduce the overall level of cognitive demand on the user. For example, if a high level of workload was detected and it is determined that the user is primarily engaged in visual information processing, then the pBCI could cause some information to be presented aurally instead. In our previous work we showed that EEG could be used to differentiate visual from auditory processing tasks when the level of processing is high, but the two modalities could not be distinguished when the level of cognitive processing demand was very low. The current study aims to build on this work and move toward the overall objective of developing a pBCI that is capable of predicting both the level and the type of cognitive resources being used. Approach. Fifteen individuals undertook carefully designed visual and auditory tasks while their EEG data was being recorded. In this study, we incorporated a more diverse range of sensory processing conditions including not only single-modality conditions (i.e. those requiring one of either visual or auditory processing) as in our previous study, but also dual-modality conditions (i.e. those requiring both visual and auditory processing) and no-task/baseline conditions (i.e. when the individual is not engaged in either visual or auditory processing). Main results. Using regularized linear discriminant analysis within a hierarchical classification algorithm, the overall cognitive demand was predicted with an accuracy of more than 86%, while the presence or absence of visual and auditory sensory processing were each predicted with an accuracy of approximately 70%. Significance. The findings support the feasibility of establishing a pBCI that can determine both the level and type of attentional resources required by the user at any given moment. This pBCI could assist in enhancing safety in hazardous jobs by triggering the most effective and efficient adaptation strategies when high workload conditions are detected.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference49 articles.

1. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness;Borghini;Neurosci. Biobehav. Rev.,2014

2. Monitoring pilot’s cognitive fatigue with engagement features in simulated and actual flight conditions using an hybrid fNIRS-EEG passive BCI;Dehais,2018

3. Analysis of the attention of a postgraduate student during the remote class session, using a brain computer interface;Rico,2021

4. Distinguishing mental attention states of humans via an EEG-based passive BCI using machine learning methods;Acı;Expert Syst. Appl.,2019

5. Toward a hybrid passive bci for the modulation of sustained attention using EEG and fNIRS;Karran;Front. Hum. Neurosci.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3