Auditory neural correlates and neuroergonomics of driving assistance in a simulated virtual environment

Author:

Baqapuri Halim IORCID,Roecher Erik,Zweerings Jana,Wolter Stefan,Schmidt Eike A,Gur Ruben C,Mathiak KlausORCID

Abstract

Abstract Objective. Driver assistance systems play an increasingly important role in modern vehicles. In the current level of technology, the driver must continuously supervise the driving and intervene whenever necessary when using driving assistance systems. The driver’s attentiveness plays an important role in this human–machine interaction. Our aim was to design a simplistic technical framework for studying neural correlates of driving situations in a functional magnetic resonance imaging (fMRI) setting. In this work we assessed the feasibility of our proposed platform. Methods. We proposed a virtual environment (VE) simulation of driver assistance as a framework to investigate brain states related to partially automated driving. We focused on the processing of auditory signals during different driving scenarios as they have been shown to be advantageous as warning stimuli in driving situations. This provided the necessary groundwork to study brain auditory attentional networks under varying environmental demands in an fMRI setting. To this end, we conducted a study with 20 healthy participants to assess the feasibility of the VE simulation. Results. We demonstrated that the proposed VE can elicit driving related brain activation patterns. Relevant driving events evoked, in particular, responses in the bilateral auditory, sensory-motor, visual and insular cortices, which are related to perceptual and behavioral processes during driving assistance. Conceivably, attentional mechanisms increased somatosensory integration and reduced interoception, which are relevant for requesting interactions during partially automated driving. Significance. In modern vehicles, driver assistance technologies are playing an increasingly prevalent role. It is important to study the interaction between these systems and drivers’ attentional responses to aid in future optimizations of the assistance systems. The proposed VE provides a foundational first step in this endeavor. Such simulated VEs provide a safe setting for experimentation with driving behaviors in a semi-naturalistic environment.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3