Accuracy and precision of navigated transcranial magnetic stimulation

Author:

Nieminen Aino EORCID,Nieminen Jaakko OORCID,Stenroos Matti,Novikov PavelORCID,Nazarova MariaORCID,Vaalto SeljaORCID,Nikulin VadimORCID,Ilmoniemi Risto JORCID

Abstract

Abstract Objective. Transcranial magnetic stimulation (TMS) induces an electric field (E-field) in the cortex. To facilitate stimulation targeting, image-guided neuronavigation systems have been introduced. Such systems track the placement of the coil with respect to the head and visualize the estimated cortical stimulation location on an anatomical brain image in real time. The accuracy and precision of the neuronavigation is affected by multiple factors. Our aim was to analyze how different factors in TMS neuronavigation affect the accuracy and precision of the coil–head coregistration and the estimated E-field. Approach. By performing simulations, we estimated navigation errors due to distortions in magnetic resonance images (MRIs), head-to-MRI registration (landmark- and surface-based registrations), localization and movement of the head tracker, and localization of the coil tracker. We analyzed the effect of these errors on coil and head coregistration and on the induced E-field as determined with simplistic and realistic head models. Main results. Average total coregistration accuracies were in the range of 2.2–3.6 mm and 1°; precision values were about half of the accuracy values. The coregistration errors were mainly due to head-to-MRI registration with average accuracies 1.5–1.9 mm/0.2–0.4° and precisions 0.5–0.8 mm/0.1–0.2° better with surface-based registration. The other major source of error was the movement of the head tracker with average accuracy of 1.5 mm and precision of 1.1 mm. When assessed within an E-field method, the average accuracies of the peak E-field location, orientation, and magnitude ranged between 1.5 and 5.0 mm, 0.9 and 4.8°, and 4.4 and 8.5% across the E-field models studied. The largest errors were obtained with the landmark-based registration. When computing another accuracy measure with the most realistic E-field model as a reference, the accuracies tended to improve from about 10 mm/15°/25% to about 2 mm/2°/5% when increasing realism of the E-field model. Significance. The results of this comprehensive analysis help TMS operators to recognize the main sources of error in TMS navigation and that the coregistration errors and their effect in the E-field estimation depend on the methods applied. To ensure reliable TMS navigation, we recommend surface-based head-to-MRI registration and realistic models for E-field computations.

Funder

Suomen Kulttuurirahasto

Aalto AScI Visiting Researcher Programme

Instrumentariumin Tiedesäätiö

NIH Brain Initiative Biology and Biophysics of Neural Stimulation and Recording Technologies

Suomen Akatemia

Basic Research Program of HSE University

H2020 European Research Council

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference87 articles.

1. Non-invasive magnetic stimulation of human motor cortex;Barker;Lancet,1985

2. Transcranial magnetic stimulation—a new tool for functional imaging of the brain;Ilmoniemi;Crit. Rev. Biomed. Eng.,1999

3. The navigation of transcranial magnetic stimulation;Herwig;Psychiatry Res. Neuroimaging,2001

4. Navigated transcranial magnetic stimulation;Ruohonen;Neurophysiol. Clin.,2010

5. Basic principles of navigated TMS;Hannula,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3