Spike sorting algorithms and their efficient hardware implementation: a comprehensive survey

Author:

Zhang Tim,Rahimi Azghadi MostafaORCID,Lammie CoreyORCID,Amirsoleimani Amirali,Genov Roman

Abstract

Abstract Objective. Spike sorting is a set of techniques used to analyze extracellular neural recordings, attributing individual spikes to individual neurons. This field has gained significant interest in neuroscience due to advances in implantable microelectrode arrays, capable of recording thousands of neurons simultaneously. High-density electrodes, combined with efficient and accurate spike sorting systems, are essential for various applications, including brain machine interfaces (BMIs), experimental neural prosthetics, real-time neurological disorder monitoring, and neuroscience research. However, given the resource constraints of modern applications, relying solely on algorithmic innovation is not enough. Instead, a co-optimization approach that combines hardware and spike sorting algorithms must be taken to develop neural recording systems suitable for resource-constrained environments, such as wearable devices and BMIs. This co-design requires careful consideration when selecting appropriate spike-sorting algorithms that match specific hardware and use cases. Approach. We investigated the recent literature on spike sorting, both in terms of hardware advancements and algorithms innovations. Moreover, we dedicated special attention to identifying suitable algorithm-hardware combinations, and their respective real-world applicabilities. Main results. In this review, we first examined the current progress in algorithms, and described the recent departure from the conventional ‘3-step’ algorithms in favor of more advanced template matching or machine-learning-based techniques. Next, we explored innovative hardware options, including application-specific integrated circuits, field-programmable gate arrays, and in-memory computing devices (IMCs). Additionally, the challenges and future opportunities for spike sorting are discussed. Significance. This comprehensive review systematically summarizes the latest spike sorting techniques and demonstrates how they enable researchers to overcome traditional obstacles and unlock novel applications. Our goal is for this work to serve as a roadmap for future researchers seeking to identify the most appropriate spike sorting implementations for various experimental settings. By doing so, we aim to facilitate the advancement of this exciting field and promote the development of innovative solutions that drive progress in neural engineering research.

Funder

ERC-CoG IONOS

NSERC HIDATA

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On-Chip Spike Detection and Classification using Neural Networks and Approximate Computing;2023 IEEE Biomedical Circuits and Systems Conference (BioCAS);2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3