Bimetallic copper-based nanowires and the means to create next-generation stable transparent electrodes

Author:

Križan AnđelaORCID,Zimny Kevin,Guyonnet Alexandre,Idowu Emmanuel OpeyemiORCID,Duguet EtienneORCID,Plissonneau Marie,d’Alençon Lauriane,Le Mercier Thierry,Tréguer-Delapierre MonaORCID

Abstract

Abstract Metallic nanowire percolating networks are one of the promising alternatives to conventional transparent conducting electrodes. Among the conductive metals, copper appears as a relevant alternative to develop electrodes in a more sustainable and economical way (abundance of the supplies, geo-political risks regarding the supplies, environmental impact, and cost). However, Cu nanowires suffer from high instability in air, and one of the ways to increase stability as well as to boost properties related to transparent electrodes is to combine the Cu with another metal, resulting in bimetallic nanowires. Even though the field of fabrication of nanoalloys has been advancing at a rapid pace in the last two decades, binary nanowires are difficult to produce due to a wide range of parameters that must be aligned in regard to metals that are being combined, such as surface energy of the bulk metal, atomic radii, crystal lattice matching, redox potentials, etc. In this review, we present the current research landscape in making Cu-based bimetallic nanowires for the development of metal nanowire networks with high oxidation resistance. This analysis allows identifying the most promising bimetallic materials for obtaining highly efficient, robust, and cost-effective electrodes.

Funder

Solvay

ANR MEANING

Publisher

IOP Publishing

Subject

Polymers and Plastics,Materials Science (miscellaneous),Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3