Front stability of infinitely steep travelling waves in population biology

Author:

Simpson Matthew JORCID,Rahman Nizhum,Tam Alexander K Y

Abstract

Abstract Reaction–diffusion models are often used to describe biological invasion, where populations of individuals that undergo random motility and proliferation lead to moving fronts. Many reaction–diffusion models of biological invasion are extensions of the well–known Fisher–Kolmogorov–Petrovskii–Piskunov model that describes the spatiotemporal evolution of a 1D population density, u ( x , t ) , as a result of linear diffusion with flux J = u / x , and logistic growth source term, S = u ( 1 u ) . In 2020 Fadai introduced a new reaction–diffusion model of biological invasion with a nonlinear degenerate diffusive flux, J = u u / x , and the model was formulated as a moving boundary problem on 0 < x < L ( t ) , with u ( L ( t ) , t ) = 0 and d L ( t ) / d t = κ u u / x at x = L ( t ) (Fadai and Simpson 2020 J. Phys. A: Math. Theor. 53 095601). Fadai’s model leads to travelling wave solutions with infinitely steep, well–defined fronts at the moving boundary, and the model has the mathematical advantage of being analytically tractable in certain parameter limits. In this work we consider the stability of the travelling wave solutions presented by Fadai. We provide general insight by first presenting two key extensions of Fadai’s model by considering: (i) generalised nonlinear degenerate diffusion with flux J = u m u / x for some constant m > 0; and, (ii) solutions describing both biological invasion with d L ( t ) / d t > 0 , and biological recession with d L ( t ) / d t < 0 . After establishing the existence of travelling wave solutions for these two extensions, our main contribution is to consider stability of the travelling wave solutions by introducing a lateral perturbation of the travelling wavefront. Full 2D time–dependent level–set numerical solutions indicate that invasive travelling waves are stable to small amplitude lateral perturbations, whereas receding travelling waves are unstable. These preliminary numerical observations are corroborated through a linear stability analysis that gives more formal insight into short time growth/decay of wavefront perturbation amplitude. Julia–based software, including level–set algorithms, is available on Github to replicate all results in this study.

Funder

Australian Research Council

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3