Dirac walks on regular trees

Author:

Delporte Nicolas,Sen SaswatoORCID,Toriumi ReikoORCID

Abstract

Abstract The study of matter fields on an ensemble of random geometries is a difficult problem still in need of new methods and ideas. We will follow a point of view inspired by probability theory techniques that relies on an expansion of the two point function as a sum over random walks. An analogous expansion for Fermions on non-Euclidean geometries is still lacking. Casiday et al (2022 Linear Multilinear Algebr. 72 325–65) proposed a classical ‘Dirac walk’ diffusing on vertices and edges of an oriented graph with a square root of the graph Laplacian. In contrast to the simple random walk, each step of the walk is given a sign depending on the orientation of the edge it goes through. In a toy model, we propose here to study the Green functions, spectrum and the spectral dimension of such ‘Dirac walks’ on the Bethe lattice, a d-regular tree. The recursive structure of the graph makes the problem exactly solvable. Notably, we find that the spectrum develops a gap and that the spectral dimension of the Dirac walk matches that of the simple random walk ( d s = 1 for d = 2 and d s = 3 for d 3 ).

Publisher

IOP Publishing

Reference61 articles.

1. Quantum gravity from causal dynamical triangulations: a review;Loll;Class. Quantum Grav.,2019

2. Frontiers of quantum gravity: shared challenges, converging directions;de Boer,2022

3. Discrete quantum gravity;Williams;J. Phys.: Conf. Ser.,2006

4. Absence of diffusion in certain random lattices;Anderson;Phys. Rev.,1958

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3