Schrödinger dynamics in length-scale hierarchy: from spatial rescaling to Huygens-like proliferation of Gaussian wavepackets

Author:

Takatsuka KazuoORCID

Abstract

Abstract Studying possible laws, rules, and mechanisms of time-evolution of quantum wavefunctions leads to deeper understanding about the essential nature of the Schrödinger dynamics and interpretation on what the quantum wavefunctions are. As such, we attempt to clarify the mechanical and geometrical processes of deformation and bifurcation of a Gaussian wavepacket of the Maslov type from the viewpoint of length-scale hierarchy in the wavepacket size relative to the range of relevant potential functions. Following the well-known semiclassical view that (1) Newtonian mechanics gives a phase space geometry, which is to be projected onto configuration space to determine the basic amplitude of a wavefunction (the primitive semiclassical mechanics), our study proceeds as follows. (2) The quantum diffusion arising from the quantum kinematics makes the Gaussian exponent complex-valued, which consequently broadens the Gaussian amplitude and brings about a specific quantum phase. (3) The wavepacket is naturally led to bifurcation (branching), when the packet size gets comparable with or larger than the potential range. (4) Coupling between the bifurcation and quantum diffusion induces the Huygens-principle like wave dynamics. (5) All these four processes are collectively put into a path integral form. We discuss some theoretical consequences from the above analyses, such as (i) a contrast between the δ-function-like divergence of a wavefunctions at focal points and the mesoscopic finite-speed shrink of a Gaussian packet without instantaneous collapse, (ii) the mechanism of release of the zero-point energy to external dynamics and that of tunneling, (iii) relation between the resultant stochastic quantum paths and wave dynamics, and so on.

Funder

KAKENHI

JSPS

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference67 articles.

1. Semiclassical approximations in wave mechanics

2. Classical-limit quantum mechanics and the theory of molecular collisions;Miller,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3