Understand anisotropy dependence of damage evolution and material removal during nanoscratch of MgF2 single crystals

Author:

Li ChenORCID,Piao Yinchuan,Zhang Feihu,Zhang Yong,Hu Yuxiu,Wang Yongfei

Abstract

Abstract To understand the anisotropy dependence of the damage evolution and material removal during the machining process of MgF2 single crystals, nanoscratch tests of MgF2 single crystals with different crystal planes and directions were systematically performed, and surface morphologies of the scratched grooves under different conditions were analyzed. The experimental results indicated that anisotropy considerably affected the damage evolution in the machining process of MgF2 single crystals. A stress field model induced by the scratch was developed by considering the anisotropy, which indicated that during the loading process, median cracks induced by the tensile stress initiated and propagated at the front of the indenter. Lateral cracks induced by tensile stress initiated and propagated on the subsurface during the unloading process. In addition, surface radial cracks induced by the tensile stress were easily generated during the unloading process. The stress change led to the deflection of the propagation direction of lateral cracks. Therefore, the lateral cracks propagated to the workpiece surface, resulting in brittle removal in the form of chunk chips. The plastic deformation parameter indicated that the more the slip systems were activated, the more easily the plastic deformation occurred. The cleavage fracture parameter indicated that the cracks propagated along the activated cleavage planes, and the brittle chunk removal was owing to the subsurface cleavage cracks propagating to the crystal surface. Under the same processing parameters, the scratch of the (001) crystal plane along the [100] crystal-orientation was found to be the most conducive to achieving plastic machining of MgF2 single crystals. The theoretical results agreed well with the experimental results, which will not only enhance the understanding of the anisotropy dependence of the damage evolution and removal process during the machining of MgF2 crystals, but also provide a theoretical foundation for achieving the high-efficiency and low-damage processing of anisotropic single crystals.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Heilongjiang Postdoctoral Fund

Open Fund of ZJUT Xinchang Research Institute

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3