High-quality micro-shape fabrication of monocrystalline diamond by nanosecond pulsed laser and acid cleaning

Author:

Okamoto YasuhiroORCID,Okubo Tubasa,Kajitani Atsuya,Okada Akira

Abstract

Abstract The flat plane of small surface roughness below 0.1 µm average roughness was obtained for monocrystalline diamond by nanosecond pulsed laser irradiation of 1060 nm and post-process acid cleaning, at a laser fluence around the material removal threshold value. The glossy and flat plane at the bottom of the micro-groove was parallel to the top surface of the specimen, although the round beam of Gaussian mode was irradiated in the direction perpendicular to the top surface of specimen. The square beam of top-hat mode produced a shallower micro-groove with a wider, flatter bottom compared with the round beam in Gaussian mode. The creation method of the flat plane with small surface roughness was discussed in the arrangement strategy of linear micro-grooving by the square beam of top-hat mode. Normal side-by-side repetition of linear micro-grooving did not create a flat plane with constant depth. Therefore, a two-step scanning method was proposed in order to overcome the problem in the normal side-by-side repetition of liner micro-grooving. Non-removal areas were partly retained between the processing lines in the first step, and the laser scanning was conducted on the retained area in the second step. The newly proposed two-step scanning method was practical and useful to create a widely flat plane with small surface roughness, and the two-step scanning method provided superior control over the micro-groove depth. This proposed method can reduce the surface roughness in addition to the shape creation of monocrystalline diamond, and it can be used as a high-quality micro-shape fabrication method of monocrystalline diamond.

Funder

Osawa Scientific Studies Grants Foundation

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3