Design and additive manufacturing of bionic hybrid structure inspired by cuttlebone to achieve superior mechanical properties and shape memory function

Author:

Yuan Luhao,Gu DongdongORCID,Liu Xin,Shi Keyu,Lin Kaijie,Liu He,Zhang Han,Dai Donghua,Sun Jianfeng,Chen Wenxin,Wang Jie

Abstract

Abstract Lightweight porous materials with high load-bearing, damage tolerance and energy absorption (EA) as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications, e.g. aerospace, automobiles, electronics, etc. Cuttlebone produced in the cuttlefish has evolved vertical walls with the optimal corrugation gradient, enabling stress homogenization, significant load bearing, and damage tolerance to protect the organism from high external pressures in the deep sea. This work illustrated that the complex hybrid wave shape in cuttlebone walls, becoming more tortuous from bottom to top, creates a lightweight, load-bearing structure with progressive failure. By mimicking the cuttlebone, a novel bionic hybrid structure (BHS) was proposed, and as a comparison, a regular corrugated structure and a straight wall structure were designed. Three types of designed structures have been successfully manufactured by laser powder bed fusion (LPBF) with NiTi powder. The LPBF-processed BHS exhibited a total porosity of 0.042% and a good dimensional accuracy with a peak deviation of 17.4 μm. Microstructural analysis indicated that the LPBF-processed BHS had a strong (001) crystallographic orientation and an average size of 9.85 μm. Mechanical analysis revealed the LPBF-processed BHS could withstand over 25 000 times its weight without significant deformation and had the highest specific EA value (5.32 J·g−1) due to the absence of stress concentration and progressive wall failure during compression. Cyclic compression testing showed that LPBF-processed BHS possessed superior viscoelastic and elasticity energy dissipation capacity. Importantly, the uniform reversible phase transition from martensite to austenite in the walls enables the structure to largely recover its pre-deformation shape when heated (over 99% recovery rate). These design strategies can serve as valuable references for the development of intelligent components that possess high mechanical efficiency and shape memory capabilities.

Funder

the Development Program of Jiangsu Province

the National Key Research and Development Program of China

National Natural Science Foundation of China

the Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3