Multi-scale simulation of the dendrite growth during selective laser melting of rare earth magnesium alloy

Author:

Wang WenliORCID,Liu Wenqiang,Yang Xin,Xu Rongrong,Dai Qiuyun

Abstract

Abstract The solidification microstructure of the alloy fabricated by the selective-laser-melting (SLM) process can significantly impact its mechanical properties. In this study, a multi-scale model which couples the macroscale model for thermal-fluid and microscale cellular automata (CA) was proposed to simulate the complex solidification evolution and the dendrite growth (from planar to cellular to dendritic growth) during the SLM process. The solid–liquid interface of CA was dispersed with the bilinear interpolation method. On that basis, the curvature was accurately determined, and the calculation result was well verified by employing the Kurz–Giovanola–Trivedi analytical solution. The dendrite morphology, solute distribution, and primary dendrite arm spacing during the solidification of the SLM molten pool were quantitatively analyzed with the proposed model, well consistent with the experiment. The distribution of the undercooling field and the concentration field at the tip of dendrites different orientations were analyzed, and the two competing growth mechanisms of converging and diverging growth were revealed. Moreover, the research also indicates that during the growth of dendrites, the result of dendrite competition is determined by the height of the dendrite tip position in the direction of the thermal gradient, while the distribution of the concentration field (symmetrical or asymmetric) at the tip of the dendrite critically impacted the competing growth form of dendrites.

Funder

Scientific Research Plan Projects of Shaanxi Education Department

Key Research and Development Plan of Shaanxi Province

Scientific Research Plan Projects of Xi’an Technology Department

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3