TCAD simulation of germanium-based heterostructure solar cell employing molybdenum oxide as a hole-selective layer

Author:

Mehmood HarisORCID,Nasser HishamORCID

Abstract

Abstract Molybdenum Oxide (MoO x ) has been used as a hole-extraction film for photovoltaic (PV) applications; however, its interaction with Germanium (Ge)-based solar cells is less understood. For the first time, this paper aims to physically model the Ge solar cell that incorporates MoO x for hole transportation at the front side of the PV device facing the sunlight. However, the charge transportation process within the PV device is influenced by several design parameters that need optimization. A higher work function of MoO x increases the barrier height against minority carriers of electrons which is beneficial for extricating holes at the front interface of MoO x /Ge. A progressive reduction in the recombination of charge carriers has been observed by including a passivation layer of amorphous silicon (i-a-Si:H). Similarly, inserting a passivation and back surface field (BSF) stack of i-a-Si:H strengthens the electric field and likewise reduces the recombination at the rear side of the device. An enhanced doping concentration of BSF assists in the favorable alignment of energy bands for improved charge transportation within the solar cell as the rear passivation maintains the field strength for accelerated movement of charge carriers. However, optimizing the thickness of the front-passivation film is challenging due to the parasitic absorption of light at larger thicknesses. A comparative study with the reference device revealed that the proposed device exhibited a step-increase in the conversion efficiency (η) from 4.23% to 13.10%, with a higher J sc of 46.4 mA cm−2, V oc of 383 mV, and FF of 74%. The proposed study is anticipated to meet the research gap in the physical device modelling of Ge-based solar cells employing high work function MoO x as a carrier-selective layer that could be conducive to the development of highly efficient multijunction solar cells.

Funder

Punjab Higher Education Commission (PHEC) Pakistan

Scientific and Technological Research Council of Turkey

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3