Development and industrial application of integrated computational materials engineering

Author:

Furrer DavidORCID

Abstract

Abstract Materials and manufacturing engineering are continuing to advance in part to computational materials and process modeling and associated linkages with associated interdisciplinary efforts across all engineering, manufacturing, and quality disciplines. Computational modeling has enabled virtual processing, prediction and assessment of potential new materials and manufacturing processes, without or with limited need to perform costly and time-consuming physical trials. Development and integration of computational materials and process engineering requires a number of seemingly disparate critical technical elements, making this evolving computational capability very complicated. Accurate and validated models are supporting rapid material, process, and component development, and additionally qualification and certification of new final products through integrated computational materials engineering (ICME). These capabilities are driving further industrial utilization of computational material and process modeling with formalized linkages and integration within multidisciplinary engineering workflows. Past utilization, present applications and potential future development activities indicate that industry has now fully embraced the tools and methods, and overarching engineering framework of ICME.

Publisher

IOP Publishing

Subject

Computer Science Applications,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New Paradigms in Model Based Materials Definitions for Titanium Alloys in Aerospace Applications;Integrating Materials and Manufacturing Innovation;2024-08-26

2. Phasing effects on thermo-mechanical fatigue damage investigated via crystal plasticity modeling;Materials Science and Engineering: A;2024-06

3. Evolution of Model-Based Materials Definitions;Integrating Materials and Manufacturing Innovation;2024-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3