Evaluating the angiogenic and mechanical properties of hydrogels and physical constructs derived from spinal cord meninges extracellular matrix

Author:

Samancioglu Aybuke,Aydin Beyza,Ozudogru ErenORCID,Arslan Yavuz EmreORCID

Abstract

Abstract The vasculature is an integral unit of the tissue microenvironment due to providing nutrients and oxygen to surrounding cells. Therefore, pro-angiogenic biomaterials have the potential to improve the success of a wide range of medical therapies, including tissue engineering, wound healing, and drug delivery. Herein, we decellularized bovine spinal cord meninges with Triton X-100 and digested them with pepsin to obtain a hydrogel (MeninGEL). The cryogel form of the MeninGEL was also prepared by lyophilization process (named as MeninRIX). DNA content analysis showed that the nuclear content was significantly reduced by 98.6% after decellularization process. Furthermore, the effect of decellularization on extracellular matrix components was investigated with glycosaminoglycan (GAG) and hydroxyproline (HYP) content analyses. Tensile, compression, and suture retention tests were performed to elucidate the mechanical properties. The physiological degradation behavior of the bioscaffolds was investigated by hydrolytically. Both MeninGEL and MeninRIX have good biocompatibility and pro-angiogenic properties, as proved by the Chick Chorioallantoic Membrane (CAM) assay. Moreover, SEM and histological analyses indicated cellular migration, attachment, and dynamism on the bioscaffolds’ surfaces. On the basis of these data, MeninGEL and MeninRIX are pro-angiogenic structures and have adequate mechanical properties, which makes them promising candidates for soft regenerative medicine applications.

Funder

Çanakkale Onsekiz Mart University Scientific Research Projects Coordination Unit

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3