Realization of high performance PZN-PT single crystal based piezoelectric flexural mode hydrophone for underwater sensor applications

Author:

Manikandan CORCID,Varadarajan EORCID,Vijayakumar P,Ramesh R,Roy Varsha,Sarguna R M,Amaladass Edward PrabuORCID,Ganesamoorthy S,Vinodkumar T K,Unni Manoj N,Venkataraman Chandra Shekar NagarORCID,Natarajan V,Babu Sridhran Moorthy

Abstract

Abstract In this article, attempts are made to grow large size PZN-PT single crystals using high temperature solution growth method by implementing novel bottom cooling technique. The grown crystals are oriented and poled along 〈001〉 direction and obtained larger piezoelectric strain coefficient (d33 > 2000 pm V−1) suitable for development of underwater acoustic sensor requirements. Flexural mode hydrophone is realized using the oriented PZN-PT single crystal discs. Finite element modeling is employed to examine the design of the flexural mode hydrophone and an equivalent circuit model is also applied to study its acoustic characteristic at two extreme boundary conditions like simply supported and clamped edge condition. The underwater acoustic response of the PZN-PT single crystal based flexural mode hydrophone is evaluated over the frequency range (100 Hz to 12 kHz) and its responses are compared with the FEM and equivalent circuit model results. The predicted results from FEM and equivalent circuit model are found to be in good agreement with the experimental results. The receiving sensitivity of the PZN-PT single crystal-based hydrophone is 12 dB higher than the PZT 5A based hydrophone in the frequency range of 2 kHz to 6 kHz. The fabricated PZN-PT single crystal-based hydrophone offers better performance than the conventional piezo ceramic based flexural hydrophone.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3