Effect of tin doping and tin-bromine co-doping on electronic and optical properties of BiOCl crystal: density functional theory

Author:

Wakjira Tadesse LemmaORCID,Tadele Kumneger,Gemta Abebe Belay,Kassahun Gashaw Beyene

Abstract

Abstract Bismuth oxychloride (BiOCl) is a layered compound known for its exceptional physical, chemical, and optical characteristics, along with notable photocatalytic performance under visible light irradiation. This investigation employed density functional theory (DFT) to analyze the electronic band structure, projected density of states (PDOS), joint density of states (JDOS), and dielectric functions of both pristine BiOCl and various doped crystalline structures utilizing a projected augmented wave basis set. The crystallographic symmetry of doped and co-doped configurations exhibited congruency with the pristine crystals. Electronic band structures were evaluated for pristine, doped, and co-doped crystalline forms. In the case of the co-doped SnxBi1−xOBrxCl1−x crystal (x = 0.0625, 0.125, and 0.25), energy band gaps of 1.40 eV, 1.42 eV, and 1.5 eV were determined, respectively, signifying a reduction in the energy band gap compared to the single doped and undoped BiOCl crystal. Analysis of the PDOS revealed that the valence band (VB) of the SnxBi1−xOBrxCl1−x crystal was characterized by Cl (p), Br (p), O (p), and Sn (s, p) states, while the conduction band (CB) primarily consisted of Bi (p) states. JDOS calculations indicated a shift in peak energy towards lower values, indicating that dopants promoted electron transitions from Cl, Sn, O, and Br p states to the Bi p state. Moreover, investigation of the dielectric function for both pure and doped BiOCl demonstrated that tin-bromine co-doping induced modifications in the static dielectric constant and dielectric permittivity of the unmodified BiOCl crystal. Ultimately, the incorporation of tin and bromine through co-doping exerted a substantial influence on the electronic and optical properties of the doped crystalline materials. Based on our computational assessments, the SnxBi1−xOBrxCl1−x configuration with x = 0.25 showcased superior visible light absorption efficiency compared to other doped variations and pristine BiOCl.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3