Mechanical and durability characteristics of sustainable coconut fibers reinforced concrete with incorporation of marble powder

Author:

Ahmad Jawad,Zaid OsamaORCID,Siddique Muhammad Shahid,Aslam Fahid,Alabduljabbar Hisham,Khedher Khaled Mohamed

Abstract

Abstract ‘Concrete needs some tensile reinforcement to enhance tensile strength and avoid unacceptable brittle nature. This study is supported out to estimate the characteristics of coconut fibers reinforced concrete with the incorporation of marble slurry. Marble waste used as binding materials in percentage of 0 to 30% in 5.0% increment by weight of cement to enhance compressive capacity while coconut fiber was used in proportion of 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0% by weight of cement to enhance tensile capacity of concrete. Mechanical performance was evaluated through compressive, flexure, and split tensile strength. To assess durability characteristics of all mix, different parameters such as acid attack resistance, carbonation resistance and water absorption are examined. Experiment findings indicate that marble slurry and coconut fiber decrease the workability of fresh concrete. Furthermore, Concrete specimens’ tests indicate that marble slurry up to 20% and coconut fiber addition 2.0% tend to improve the mechanical performance of hardened Concrete. It also indicates that durability aspects such as water absorption, carbonation resistance and acid attack resistance significantly improved with the substitution of marble waste and coconut fibers. Response surface methodology (statistically models) is used to optimize combine dosage of marble slurry and coconut fiber and verified through experimental tests’.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference57 articles.

1. Utilization of industrial waste in construction material–a review;Agrawal;Int J Innov Res Sci Eng Technol,2014

2. Utilization of marble slurry in cement concrete replacing fine aggregate;Singh Kuswah;Am J Eng Res,2015

3. Characterization of marble powder for its use in mortar and concrete;Corinaldesi;Constr. Build. Mater.,2010

4. Evaluation of marble waste dust in the mixture of asphaltic concrete;Karaşahin;Constr. Build. Mater.,2007

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3