Dispersion of ZnO or TiO2 nanoparticles onto P. australis stem-derived biochar for highly efficient photocatalytic removal of doxycycline antibiotic under visible light irradiation

Author:

Tuoi Nguyen Thanh,Nguyet Bui Thi Minh,Tuyen Tran Ngoc,Khac Lieu PhamORCID,Khieu Dinh QuangORCID,Van Hung NguyenORCID

Abstract

Abstract Biochar (BC) derived from reed stems was prepared by high-temperature pyrolysis, and two types of ZnO/biochar (ZBC) and TiO2/biochar (TBC) composite materials were synthesized via a simple hydrolysis method. These composites, compared to pure ZnO and TiO2, exhibit not only improved but significantly enhanced crystalline structures and larger specific surface areas. This enhancement in the physical and chemical properties of ZBC and TBC composites is a crucial aspect of our research, as it leads to a distinct red-shifted absorption edge and excellent visible-light absorption characteristics. The photocatalytic degradation efficiency of ZBC and TBC composite materials, a key finding of our study, was evaluated using doxycycline antibiotic as a simulated pollutant under visible-light irradiation. The results demonstrate a 6.0-fold and 7.3-fold increase in photocatalytic degradation efficiency of ZBC and TBC composites compared to pure ZnO and TiO2, respectively, further underscoring the significance of these enhanced properties. Furthermore, active species trapping experiments reveal that ·OH radicals are the dominant reactive species in the photocatalytic degradation process of doxycycline. A Langmuir–Hinshelwood kinetic model accurately represents this degradation process. Kinetic data indicate that the degradation rate constants (k) of ZBC and TBC catalysts are 4.314 × 10−2 min−1 and 3.416 × 10−2 min−1, respectively. The photocatalysts exhibit no significant decrease in degradation efficiency for ZBC and TBC even after the fourth cycle, indicating their relatively high reusability. These results suggest that ZBC and TBC materials can be used as stable, efficient, cost-effective, and sustainable photocatalytic composite materials for antibiotic-contaminated wastewater treatment.

Funder

The Ministry of Education and Training of Vietnam

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3