Abstract
Abstract
The effect of laser irradiation in the energy range from 20 mW to 200 mW was investigated in 109 nm thick Fe51Rh49 film deposited on an MgO (100) substrate. The initial, A1 structure with fully paramagnetic magnetic ordering was achieved after irradiating the samples with 120 keV Ne+ ions with a fluence of 1 × 1016 ion cm−2, as it was confirmed by conversion-electron Mössbauer spectroscopy. At higher powers physical damage of the layer was observed, while in the lowest power case, magnetic force microscopy revealed a well-defined magnetic structure reflecting the laser irradiation pattern. The presented results have the potential to be employed for laser ablation or allows the fabrication of arbitrary ferromagnetic pattern within a homogeneous paramagnetic FeRh thin films.
Funder
National Research, Development and Innovation Office
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献