Folic acid-decorated vitamin E Poly(ethylene glycol) monoplatinum ester with disulfide bond as theranostic nanoparticle for drug resistant tumor diagnosis and treatment

Author:

Li ZhuoranORCID,Yang Huikang,Xu Fan,Zeng Xuwen,Huang HaoweiORCID,Jiang Xinqing

Abstract

Abstract Vitamin E Poly(ethylene glycol) monoplatinum ester (TPGS) nanoparticles have attracted much attention in recent years for overcome multidrug resistance. Herein, a well-defined folic acid (FA)-conjugated and disulfide bond-linked polymer (FA-SS-TPGS) was synthesized. These polymer nanoparticles were utilized as theranostic agents for tumor-targeted magnetic resonance imaging (MRI) and chemotherapy. By loading doxorubicin (DOX) and superparamagnetic iron oxide (SPIO) particles into TPGS nanoparticles, FA-SS-TPGS@DOX/SPIO nanoparticles are obtained. In vitro drug release studies revealed that under a reducing environment in the presence of glutathione (GSH), approximately 100% of the doxorubicin (DOX) was released from the disulfide bond-linked theranostic nanoparticles within 24 h. DOX and SPIO were efficiently delivered into HepG2-ADM cells due to the folate receptor-mediated endocytosis process of the nanoparticles. Additionally, the presence of glutathione (GSH) triggered the cleaving of the disulfide bonds, further facilitating the delivery of DOX and SPIO into the cells. Furthermore, the FA-SS-TPGS @DOX-SPIO nanoparticles exhibited strong MRI contrast enhancement properties. In conclusion, FA-SS-TPGS@DOX/SPIO are potential nanoparticles for tumor-targeted MRI and chemotherapy, which can also overcome multidrug resistance.

Funder

the Guangzhou Health Science and Technology project

the National Natural Science Foundation of China

the Guangdong Basic and Applied Basic Research Foundation

the Science and Technology Project of Guangzhou

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3