Abstract
Abstract
In this study, magnesium alloy (AZ91D) matrix composites reinforced with 1 wt% of nano alumina (n-Al2O3) were fabricated using novel Ultrasonic Treatment (UST) assisted squeeze casting method. UST was carried out at four different levels of ultrasonic power namely, 0 W (without UST), 1500 W, 2000 W and 2500 W at constant frequency and time. The composites were heat-treated at T6 condition under argon gas protected environment. Microstructural analysis was done using optical microscopy and high-resolution scanning electron microscopy. Physical, mechanical and tribological properties of the composites were evaluated. A significant refinement in grain structure and improvement in porosity was seen on an increase in UST power. Improvement was seen in micro-hardness, yield strength, ultimate tensile strength and % of elongation of the composite fabricated at 2500 W by 18%, 48%, 28%, and 10% respectively compared to an untreated composite. The composite fabricated at 2500 W showed less wear rate and coefficient of friction when compared to other composites at all sliding conditions. Scanning electron microscope images of the worn surface of the composite pins revealed that the wear mechanisms dominated were abrasion, adhesion, oxidation and delamination.
Funder
Science and Engineering Research Board
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献