Microstructure and mechanical property improvement of concurrent wire-powder feeding laser melting deposition Ti-6Al-4V via TiC addition

Author:

Wang ChenyangORCID,Xing FeiORCID,Liu Xiangyu,Bian Hongyou,Liu Weijun

Abstract

Abstract Wire-feed laser metal deposition (LMD-W) offers a high deposition rate and low cost, making it an effective solution for reducing costs and enhancing efficiency in manufacturing large-scale titanium aerospace components. Currently, the material used for LMD-W is typically a single alloy wire, which limits the flexibility and functionality of manufacturing composite materials. This work employed a novel concurrent wire-powder feeding laser metal deposition (LMD-WP) process to manufacture TiC/Ti-6Al-4V composite. In the LMD-WP method, Ti-6Al-4V wire was fed laterally, while TiC particles were delivered coaxially. Only 1.0 wt% TiC particles were added to prevent excessive TiC, which could cause stress concentration and increase crack sensitivity. The microstructure and mechanical properties of Ti-6Al-4V alloy and TiC/Ti-6Al-4V composite were investigated. The results indicate that with coaxial TiC particle addition, the α-Ti in TiC/Ti-6Al-4V is noticeably refined. Additionally, in situ TiC acts as heterogeneous nucleation sites, restricting α-Ti growth and reducing its aspect ratio. Furthermore, TiC particles weakened the α-Ti texture in the (0001) and (11–20) directions. Moreover, adding TiC particles significantly enhanced tensile strength, with the yield strength reaching 950 MPa and the ultimate tensile strength reaching 1048 MPa. Compared to Ti-6Al-4V alloy fabricated by LMD-W, this represents an increase of 11.25% and 10.72%, respectively. The improvement in tensile properties is principally ascribed to grain boundary strengthening, Orowan strengthening and dislocation density strengthening. This work introduces an innovative approach and abundant data for the additive manufacturing of TiC/Ti-6Al-4V composite with high efficiency and low cost.

Funder

The second batch of technology breakthrough projects under the 'Unveiling and Commanding' initiative.

National Key Research and Development Program of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3