Structural, optical, and shielding properties of lead borate glasses doped with copper oxide

Author:

Bawazeer OmemhORCID

Abstract

Abstract Lead borate glasses of the system 25PbO-(75-x) B2O3-xCuO (x = 0, 0.025, 0.05, and 0.1) in mol.% were synthesized via the traditional melt quenching method abbreviated as (BPbCu0, BPbCu1, BPbCu2, and BPbCu3) respectively. XRD diffraction confirmed the amorphous nature of the samples. According to FTIR spectroscopy, the function groups (BO3 and BO4) and the fraction of boron tetrahedral units (N4) were determined. The density, molar volume, packing density, and some other physical parameters were calculated and discussed. The density was increased by incorporating CuO as a substitution for B2O3, while the molar volume was decreased. The ion concentrations of Cu, inter-nuclear distance, field strength, and polaron radius were also computed. The optical absorption study suggested that the copper ions exist in the Cu2+ and act as a modifier by increasing the disorder in the glass network. Hence, the present glass behaves as a bandpass filter in the UV–vis. region. The radiation shielding properties of the as-prepared samples were theoretically calculated using the Phy-X program at energies ranging from 0.015 to 1.5 MeV. The linear and mass attenuation coefficients, as well as the half-value layer (HVL) and exposure buildup factor (EBF), have been evaluated. The results revealed that shielding parameters are affected by CuO concentrations and photon energy. Based on the results presented in the manuscript, the glass sample with 0.1 mol% CuO doping (BPbCu3) showed the best properties overall for optical and radiation shielding applications. Specifically, BPbCu3 had the highest density, refractive index, optical dielectric constant, and radiation shielding parameters such as linear attenuation coefficient and half value layer among the glass samples. The addition of 0.1 mol% CuO introduced Cu2+ ions which acted as network modifiers, increasing the disorder in the glass structure. This in turn enhanced the optical bandgap as well as the shielding capabilities against gamma radiation.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3