Numerical and experimental study of temperature, residual stresses, and microstructural evolution on multi-layer and multi-pass laser cladding of 6061Al alloy

Author:

Tang Weifeng,Liu Aoqi,Song Chengyu,Zhou LiORCID

Abstract

Abstract Multi-layer and multi-pass laser cladding is a promising and important process for repairing and strengthening Al alloy parts, whereas the temperature and residual stresses have a great influence on the properties of the laser cladding layer. In this paper, a nonlinear transient thermo-mechanical coupling finite element model of multi-layer and multi-pass cladding of 6061Al alloy was established. Meanwhile, the DFLUX user subroutine was developed using Fortran code to define the movement of the three-dimensional heat source model. From there, the distribution and evolution of temperature and stresses at different times were investigated. In addition, the micro-morphology and micro-hardness after cladding were also analyzed in detail. The results show that both the maximum residual tensile and compressive stresses decrease with increasing the number of cladding passes. At the same time, due to the reheating effect of each cladding on the previous cladding, a few bubbles appear at the top, middle and bottom of the overlap surfaces. Moreover, the micro-hardness of the overlap surfaces decreases slightly. This study can provide a theoretical basis for further research into multi-layer and multi-pass laser cladding of 6061Al alloy.

Funder

Natural Science Foundation of Shandong Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3