Molecular Insights into Striking Antibody Evasion of SARS-CoV-2 Omicron Variant

Author:

Yan Zeng-Shuai,Xu Yao,Ding Hong-Ming,Ma Yu-Qiang

Abstract

The SARS-CoV-2 Omicron variant has become the dominant variant in the world. Uncovering the structural basis of altered immune response and enhanced transmission of Omicron is particularly important. Here, taking twenty-five antibodies from four groups as examples, we comprehensively reveal the underlying mechanism of how mutations in Omicron induces the weak neutralization by using molecular simulations. Overall, the binding strength of 68% antibodies is weakened in Omicron, much larger than that in Delta (40%). Specifically, the percentage of the weakened antibodies vary largely in different groups. Moreover, the mutation-induced repulsion is mainly responsive for the weak neutralization in AB/CD groups but does not take effect in EF group. Significantly, we demonstrate that the disappearance of hydrophobic interaction and salt bridges due to residue deletions contributes to the decreased binding energy in NTD group. This work provides unprecedented atomistic details for the distinct neutralization of WT/Delta/Omicron, which informs prospective efforts to design antibodies/vaccines against Omicron.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3