An integrated model combining BERT and tree-augmented naive Bayes for analyzing risk factors of construction accident

Author:

Liu ShupengORCID,Shen JianhongORCID,Zhang Jing

Abstract

PurposeLearning from past construction accident reports is critical to reducing their occurrence. Digital technology provides feasibility for extracting risk factors from unstructured reports, but there are few related studies, and there is a limitation that textual contextual information cannot be considered during extraction, which tends to miss some important factors. Meanwhile, further analysis, assessment and control for the extracted factors are lacking. This paper aims to explore an integrated model that combines the advantages of multiple digital technologies to effectively solve the above problems.Design/methodology/approachA total of 1000 construction accident reports from Chinese government websites were used as the dataset of this paper. After text pre-processing, the risk factors related to accident causes were extracted using KeyBERT, and the accident texts were encoded into structured data. Tree-augmented naive (TAN) Bayes was used to learn the data and construct a visualized risk analysis network for construction accidents.Findings The use of KeyBERT successfully considered the textual contextual information, prompting the extracted risk factors to be more complete. The integrated TAN successfully further explored construction risk factors from multiple perspectives, including the identification of key risk factors, the coupling analysis of risk factors and the troubleshooting method of accident risk source. The area under curve (AUC) value of the model reaches up to 0.938 after 10-fold cross-validation, indicating good performance.Originality/value This paper presents a new machine-assisted integrated model for accident report mining and risk factor analysis, and the research findings can provide theoretical and practical support for accident safety management.

Publisher

Emerald

Reference57 articles.

1. Deep-eware: spatio-temporal social event detection using a hybrid learning model;Journal of Big Data,2022

2. AI-based prediction of independent construction safety outcomes from universal attributes;Automation in Construction,2020

3. BayesFusion (2020), “BayesFusion website”, available at: https://www.bayesfusion.com/(accessed 7 May 2023).

4. A Bayesian Network model for risk analysis of deepwater drilling riser fracture failure;Ocean Engineering,2019

5. Evolution model and quantitative assessment of risk network in housing construction accidents;Engineering, Construction and Architectural Management,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3