Author:
Tavousi Ebrahim,Perera Noel,Flynn Dominic,Hasan Reaz
Abstract
Purpose
The purpose of the study is to numerically investigate the characteristics of laminar heat transfer and fluid flow in a double tube heat exchanger (DTHE) using water-aluminum oxide (Al2O3) nanofluid. The study examines the effects of nanofluid in both counter and parallel flow configurations. Furthermore, an exergy analysis is conducted to assess the impact of nanofluid on exergy destruction.
Design/methodology/approach
The single-phase method has been used for Al2O3 nanoparticles in water as base fluid in a laminar regime for Reynolds numbers from 400 to 2,000. The effects of nanoparticle volume fractions (0 to 0.1), Nusselt number, Reynolds number, heat transfer coefficient, pressure drop, performance evaluation criteria (PEC) and the impact of counter and parallel flow direction have been studied.
Findings
The findings indicate that the incorporation of nanoparticles into the water enhances the heat transfer rate of DTHE. This enhancement is attributed to the improved thermal properties of the working fluid and its impact on the thermal boundary layer. Nusselt number, heat transfer coefficient, and PEC increase by approximately 19.5%, 58% and 1.2, respectively, in comparison to pure water. Conversely, the pressure drop experiences a 5.3 times increase relative to pure water. Exergy analysis reveals that nanofluids exhibit lower exergy destruction compared to pure water. The single-phase method showed better agreement with the experimental results compared to the two-phase method.
Originality/value
Dimensionless correlations were derived and validated with experimental and numerical results for the Nusselt number and PEC for both counter and parallel flow configurations based on the Reynolds number and nanoparticles volume fraction with high accuracy to predict the performance of DTHE without performing time-consuming simulations. Also, an exergy analysis was performed to compare the exergy destruction between nanofluid and pure water.
Subject
Mechanical Engineering,Aerospace Engineering,Computational Mechanics,Engineering (miscellaneous)
Reference71 articles.
1. Experimental investigation for sequential triangular double-layered microchannel heat sink with nanofluids;International Communications in Heat and Mass Transfer,2016
2. Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel;Advances in Mechanical Engineering,2015
3. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid;Physica E: Low-Dimensional Systems and Nanostructures,2017
4. Investigation of rib's height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel;Applied Mathematics and Computation,2016
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献