Author:
Zhi Yuanjie,Fu Dongmei,Yang Tao,Zhang Dawei,Li Xiaogang,Pei Zibo
Abstract
PurposeThis study aims to achieve long-term prediction on a specific monotonic data series of atmospheric corrosion rate vs time.Design/methodology/approachThis paper presents a new method, used to the collected corrosion data of carbon steel provided by the China Gateway to Corrosion and Protection, that combines non-linear gray Bernoulli model (NGBM(1,1) with genetic algorithm to attain the purpose of this study.FindingsResults of the experiments showed that the present study’s method is more accurate than other algorithms. In particular, the mean absolute percentage error (MAPE) and the root mean square error (RMSE) of the proposed method in data sets are 9.15 per cent and 1.23 µm/a, respectively. Furthermore, this study illustrates that model parameter can be used to evaluate the similarity of curve tendency between two carbon steel data sets.Originality/valueCorrosion data are part of a typical small-sample data set, and these also belong to a gray system because corrosion has a clear outcome and an uncertainly occurrence mechanism. In this work, a new gray forecast model was proposed to achieve the goal of long-term prediction of carbon steel in China.
Subject
General Materials Science,General Chemical Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献