Application of fused deposition in controlled microstructure metal‐ceramic composites

Author:

Bandyopadhyay Amit,Das Kakoli,Marusich Jeff,Onagoruwa Seyi

Abstract

PurposeAl‐alumina interconnected phase composites were processed using the direct fused deposition process. These materials with tailored microstructures can find applications as structural materials with gradient properties.Design/methodology/approachIn this process, feedstock material with fused silica as a starting material was compounded at a high shear mixer and then extruded as a filament using a single screw extruder. Extruded filaments were used with a commercial fused deposition modeler, FDM 1650, to process controlled porosity green ceramic structures. Porous green ceramic preforms were subjected to binder removal and sintering cycles in furnace air. Controlled porosity sintered ceramic structures were infiltrated with Al 5052 metal by pressureless reactive metal infiltration to form an in situ Al‐alumina structured composite.FindingsThe main advantage for this approach is to control distribution of both metal and ceramic phases in the composite. During metal infiltration good bonding was observed between the metal and the ceramic phases. Composites were tested under both quasi‐static and dynamic shock loading to evaluate their mechanical properties. Compression strength of these composites was 689±95 MPa.Originality/valueThis paper describes application of the direct fused deposition process for fabrication of ceramic/metal composites where both macrostructure as well as microstructure can be controlled simultaneously. The paper also focuses on one of the potential application area for 5052‐Al alloy.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3