Abstract
PurposePath planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such as easy to fall into the local optimum, so that the improved PSO applied to the UAV path planning can enable the UAV to plan a better quality path.Design/methodology/approachFirstly, the adaptation function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself. Secondly, the standard PSO is improved, and the improved particle swarm optimization with multi-strategy fusion (MFIPSO) is proposed. The method introduces class sigmoid inertia weight, adaptively adjusts the learning factors and at the same time incorporates K-means clustering ideas and introduces the Cauchy perturbation factor. Finally, MFIPSO is applied to UAV path planning.FindingsSimulation experiments are conducted in simple and complex scenarios, respectively, and the quality of the path is measured by the fitness value and straight line rate, and the experimental results show that MFIPSO enables the UAV to plan a path with better quality.Originality/valueAiming at the standard PSO is prone to problems such as premature convergence, MFIPSO is proposed, which introduces class sigmoid inertia weight and adaptively adjusts the learning factor, balancing the global search ability and local convergence ability of the algorithm. The idea of K-means clustering algorithm is also incorporated to reduce the complexity of the algorithm while maintaining the diversity of particle swarm. In addition, the Cauchy perturbation is used to avoid the algorithm from falling into local optimum. Finally, the adaptability function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself, which improves the accuracy of the evaluation model.
Reference33 articles.
1. IoD swarms collision avoidance via improved particle swarm optimization;Transportation Research Part A: Policy and Practice,2020
2. A survey on the application of path-planning algorithms for multi-rotor UAVs in precision agriculture;The Journal of Navigation,2022
3. A comprehensively improved particle swarm optimization algorithm to guarantee particle activity;Russian Physics Journal,2021
4. Three-dimensional path planning based on fuzzy logic particle swarm algorithm;Electro-Optics and Control,2020
5. Chaos particle swarm optimization enhancement algorithm for UAV safe path planning;Applied Sciences,2022
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-Objective Optimization for UAV Path Planning with Surrogate Models;2024 International Conference on Machine Intelligence and Digital Applications;2024-05-30