Improved particle swarm optimization based on multi-strategy fusion for UAV path planning

Author:

Ye ZijingORCID,Li HuanORCID,Wei WenhongORCID

Abstract

PurposePath planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such as easy to fall into the local optimum, so that the improved PSO applied to the UAV path planning can enable the UAV to plan a better quality path.Design/methodology/approachFirstly, the adaptation function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself. Secondly, the standard PSO is improved, and the improved particle swarm optimization with multi-strategy fusion (MFIPSO) is proposed. The method introduces class sigmoid inertia weight, adaptively adjusts the learning factors and at the same time incorporates K-means clustering ideas and introduces the Cauchy perturbation factor. Finally, MFIPSO is applied to UAV path planning.FindingsSimulation experiments are conducted in simple and complex scenarios, respectively, and the quality of the path is measured by the fitness value and straight line rate, and the experimental results show that MFIPSO enables the UAV to plan a path with better quality.Originality/valueAiming at the standard PSO is prone to problems such as premature convergence, MFIPSO is proposed, which introduces class sigmoid inertia weight and adaptively adjusts the learning factor, balancing the global search ability and local convergence ability of the algorithm. The idea of K-means clustering algorithm is also incorporated to reduce the complexity of the algorithm while maintaining the diversity of particle swarm. In addition, the Cauchy perturbation is used to avoid the algorithm from falling into local optimum. Finally, the adaptability function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself, which improves the accuracy of the evaluation model.

Publisher

Emerald

Subject

General Computer Science

Reference33 articles.

1. IoD swarms collision avoidance via improved particle swarm optimization;Transportation Research Part A: Policy and Practice,2020

2. A survey on the application of path-planning algorithms for multi-rotor UAVs in precision agriculture;The Journal of Navigation,2022

3. A comprehensively improved particle swarm optimization algorithm to guarantee particle activity;Russian Physics Journal,2021

4. Three-dimensional path planning based on fuzzy logic particle swarm algorithm;Electro-Optics and Control,2020

5. Chaos particle swarm optimization enhancement algorithm for UAV safe path planning;Applied Sciences,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Objective Optimization for UAV Path Planning with Surrogate Models;2024 International Conference on Machine Intelligence and Digital Applications;2024-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3