Optimizing cooling setpoint using adaptive thermal comfort concept for school building in desert climates under current and future climates

Author:

Baba FuadORCID,Awad JihadORCID,Elkahlout YazanORCID,Sherzad Mohammed

Abstract

PurposeThis paper aims to compare the impacts of adaptive daily and seasonal cooling setpoints on cooling energy consumption and overheating hours to determine which approach is more effective in a desert climate, develop a methodology that effectively integrates passive strategies with adaptive daily and seasonal cooling setpoint strategies and assess how future climate conditions will impact these strategies in the medium and long term.Design/methodology/approach(1) Integrate adaptive thermal comfort principles into mechanical cooling systems to find the optimized cooling setpoint. (2) Evaluating the optimized cooling setpoints using a mixed-mode operation: In this step, the natural ventilation is activated by opening 40% of the window area when the indoor temperature is higher than 23°C and the outdoor temperature. Both the adaptive seasonal and daily setpoint strategies are evaluated. (3) If overheating hours exceed acceptable limits gradually add mitigation measures (e.g. exterior shading, cool roofs and green roofs). (4) If necessary, further reduce the cooling setpoint until acceptable limits are met. (5) Generate extreme future climate scenarios and evaluate the optimized model. (6) Implement additional measures and setpoint adjustments to maintain acceptable overheating hours in future conditions.FindingsAlthough the building complies with the Dubai Green Code and uses external shading, its cooling energy consumption was 92 kWh/m² in 2021 with a 24°C setpoint. Using the adaptive seasonal setpoint combined with a cool roof, night cooling and cross-ventilation reduces cooling energy consumption by 52, 48 and 35% in 2020, 2050 and 2090, respectively, with overheating hours not exceeding 40 h annually. Using an adaptive daily setpoint strategy with the same mitigation measures is similarly effective; it achieved a 57, 42 and 34% reduction in cooling energy consumption in 2020, 2050 and 2090, respectively, while eliminating overheating hours.Originality/valueThe originality and value of this study lie in optimizing cooling setpoints without the effect of overheating hours in desert climates. Using the adaptive seasonal setpoint combined with a cool roof, night cooling and cross-ventilation reduces cooling energy consumption by 52, 48 and 35% in 2020, 2050 and 2090, respectively, with overheating hours not exceeding 40 h annually. Using an adaptive daily setpoint strategy with the same mitigation measures is similarly effective; it achieved a 57, 42 and 34% reduction in cooling energy consumption in 2020, 2050 and 2090, respectively, while eliminating overheating hours.Highlights(1)A methodology is developed to find the optimal cooling setpoints(2)Adaptive thermal comfort concept is extended for integration with a cooling system(3)Validation simulation model is used using certain building information(4)Climate change effect is studied using current and future warmer typical years(5)Effective passive summer mitigation measures are studied

Publisher

Emerald

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3