Intensive care unit nursing workload estimation in smart hospitals

Author:

Nolio Santa Cruz RenéORCID,Vaz Sampaio Hugo,Becker Westphall Carlos,Dutra de Camargo Maximiliano,Couto Carvalho Barra Daniela

Abstract

PurposeThe objectives of the proposed model are: aiding nursing staff in documentation tasks, which can be onerous and stressful; and helping management by offering an estimate of the nursing workload, which can be considered for administrative purposes, such as staff scheduling.Design/methodology/approachAn exploratory-descriptive study was conducted in order to identify, investigate, and describe the problem of documenting nursing activities and workload estimation in an intensive care unit. Technological solutions were explored, and models were proposed to address these issues.FindingsCross-dataset experiments were performed, and the model was able to offer an adequate estimate of the nursing workload. The results suggest that continuous retraining is essential for maintaining high accuracy. While the proposed model was considered in the context of an adult ICU, it can be adapted to other contexts, such as elderly care.Research limitations/implicationsWhile the proposed solution seems promising, further research is required, such as deploying this system in an ICU and facing challenges in the areas of computer security, medical ethics, and patient data privacy. More patients’ variables could also be collected to improve the workload estimates.Originality/valueNursing workload assessment is critical to improve the cost-benefit ratio in health care, offer high-quality patient care, and reduce unnecessary expenses, and this process is usually manual. An automated device can automatically document the amount of time spent in patient care activities in a more transparent, efficient, and accurate manner, freeing staff for more urgent activities and keeping management better informed about day-to-day nursing operations.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3