Data-driven determination of plant growth stages for improved weather index insurance design

Author:

Zou JingORCID,Odening MartinORCID,Okhrin OstapORCID

Abstract

PurposeThis paper aims to improve the delimitation of plant growth stages in the context of weather index insurance design. We propose a data-driven phase division that minimizes estimation errors in the weather-yield relationship and investigate whether it can substitute an expert-based determination of plant growth phases. We combine this procedure with various statistical and machine learning estimation methods and compare their performance.Design/methodology/approachUsing the example of winter barley, we divide the complete growth cycle into four sub-phases based on phenology reports and expert instructions and evaluate all combinations of start and end points of the various growth stages by their estimation errors of the respective yield models. Some of the most commonly used statistical and machine learning methods are employed to model the weather-yield relationship with each selected method we applied.FindingsOur results confirm that the fit of crop-yield models can be improved by disaggregation of the vegetation period. Moreover, we find that the data-driven approach leads to similar division points as the expert-based approach. Regarding the statistical model, in terms of yield model prediction accuracy, Support Vector Machine ranks first and Polynomial Regression last; however, the performance across different methods exhibits only minor differences.Originality/valueThis research addresses the challenge of separating plant growth stages when phenology information is unavailable. Moreover, it evaluates the performance of statistical and machine learning methods in the context of crop yield prediction. The suggested phase-division in conjunction with advanced statistical methods offers promising avenues for improving weather index insurance design.

Publisher

Emerald

Reference98 articles.

1. Theoretical foundations of the potential function method in pattern recognition learning;Automation and Remote Control,1964

2. How do inputs and weather drive wheat yield volatility? The example of Germany;Food Policy,2017

3. An outlier-robust fit for generalized additive models with applications to disease outbreak detection;Journal of the American Statistical Association,2011

4. The timing of flowering;Plant Physiology,2010

5. Impact of extreme weather conditions on European crop production in 2018;Philosophical Transactions of the Royal Society B,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3