Modeling natural convection with the work of pressure‐forces: a thermodynamic necessity

Author:

Pons M.,Le Quéré P.

Abstract

PurposeThis paper aims to present and then resolve the thermodynamic inconsistencies inherent in the usual Boussinesq model, especially with respect to the second law, and to highlight the effects of the correction.Design/methodology/approachThe Boussinesq model (i.e. still assuming ▽v=0) is made thermodynamically consistent by maintaining in the heat equation, primarily the work of pressure forces, secondarily the heat generated by viscous friction. Numerically speaking, the modifications are very easy and hardly affect the computing time. However, new non‐dimensional parameters arise, especially the non‐dimensional adiabatic temperature gradient, ϕ.FindingsThere are presented and interpreted results of systematic numerical simulations done for a two‐dimensional square differentially‐heated cavity filled with air at 300K, with Rayleigh number ranging from 3,000 to 108 and ϕ ranging from 10−3 to 2. All configurations are stationary and the fluid is far from its critical state. Nevertheless, the pressure‐work effect (similar to the piston effect) enhances the heat transfer while diminishing the convection intensity. The magnitude of this effect is non‐negligible as soon as ϕ reaches 0.02.Practical implicationsThe domain where the thermodynamic Boussinesq model must be used encompasses configurations relevant to building engineering.Originality/valueExact second‐law analyses can be developed with the so‐corrected model.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference18 articles.

1. Bejan, A. (1984), Convection Heat Transfer, Wiley, New York, NY.

2. Boussinesq, J. (1903), Théorie Analytique de la Chaleur, Gauthier‐Villars, Paris.

3. De Vahl Davis, G. (1983), “Natural convection of air in a square cavity: a bench mark numerical solution”, Int. J. Numer. Meth. Fluids, Vol. 3, pp. 249‐64.

4. Gadoin, E., Le Quéré, P. and Daube, O. (2001), “A general methodology for investigating flow instabilities in complex geometries: application to natural convection in enclosures”, Int. J. Numer. Meth. Fluids, Vol. 37, pp. 175‐208.

5. Gebhart, B., Jaluria, Y., Mahajan, R.L. and Sammakia, B. (1988), Buoyancy‐induced Flows and Transport, Reference ed., Hemisphere Pub. Corp., New York, NY.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3