Novel polymeric support materials for jetting based additive manufacturing processes

Author:

Fahad M.,Dickens P.,Gilbert M.

Abstract

PurposeJetting‐based additive manufacturing processes are gaining attention due to their high speed of operation, accuracy and resolution. Support material plays an important role in the additive manufacturing of parts by using processes that utilise jetting (inkjet) technology. This research aims to present novel support material compositions consisting of methylcellulose (MC) and propylene glycol or butylene glycol. These compositions form gels which are easy to remove and provide the advantage of reusability.Design/methodology/approachMC was mixed in propylene glycol or butylene glycol in different concentrations and examined for gel formation on heating and subsequent cooling. The viscosity and surface tension of these compositions were measured at temperatures suitable for jetting. Gel strength was characterised using texture analysis.FindingsThe viscosity and surface tension values at elevated temperatures (i.e. 800°C) show the suitability of these compositions for jetting‐based additive manufacturing processes. Due to their softness, these gels can be removed easily and their low melting points (i.e. near 500°C) allow their reusability as support materials.Practical implicationsThis paper provides a novel approach of using polymer gels as support materials for additive manufacturing processes. These gels are easy to prepare and enhance the sustainability due to their reusability.Originality/valueAlthough, MC in water have shown to form gels and these aqueous gels have been used in many applications such as medicine and food industries, the compositions presented in this paper are unique. Such combinations of MC and non‐aqueous solvents (i.e. propylene glycol and butylene glycol) have not been discussed before and provide an early step towards a new application area (i.e. additive manufacturing) for these gels.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3