Design and optimization of microstructure of auxetic materials

Author:

Javadi Akbar A.,Faramarzi Asaad,Farmani Raziyeh

Abstract

PurposeAuxetic materials differ from conventional materials by the manner in which they respond to stretching; they tend to get fatter when stretched, resulting in a negative Poisson's ratio. The purpose of this paper is to present a numerical methodology for design of microstructure of 2D and 3D auxetic materials with a wide range of different negative Poisson's ratios.Design/methodology/approachThe proposed methodology is based on a combination of finite element method and a genetic algorithm. The problem is formulated as an optimization problem of finding microstructures with prescribed behavioral requirements. Different microstructures are generated and evolved using the genetic algorithm and the behavior of each microstructure is analyzed using the finite element method to evaluate its fitness in competition with other generated structures.FindingsNumerical examples show that it is possible to design a large number of new auxetic materials, each with a different value of negative Poisson's ratio.Originality/valueThe proposed methodology can be used as an effective method to tailor new materials with prescribed values of negative (or positive) Poisson's ratio. The methodology can also be used to optimize other material properties.

Publisher

Emerald

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3