Robust ensemble of handcrafted and learned approaches for DNA-binding proteins

Author:

Nanni Loris,Brahnam SherylORCID

Abstract

PurposeAutomatic DNA-binding protein (DNA-BP) classification is now an essential proteomic technology. Unfortunately, many systems reported in the literature are tested on only one or two datasets/tasks. The purpose of this study is to create the most optimal and universal system for DNA-BP classification, one that performs competitively across several DNA-BP classification tasks.Design/methodology/approachEfficient DNA-BP classifier systems require the discovery of powerful protein representations and feature extraction methods. Experiments were performed that combined and compared descriptors extracted from state-of-the-art matrix/image protein representations. These descriptors were trained on separate support vector machines (SVMs) and evaluated. Convolutional neural networks with different parameter settings were fine-tuned on two matrix representations of proteins. Decisions were fused with the SVMs using the weighted sum rule and evaluated to experimentally derive the most powerful general-purpose DNA-BP classifier system.FindingsThe best ensemble proposed here produced comparable, if not superior, classification results on a broad and fair comparison with the literature across four different datasets representing a variety of DNA-BP classification tasks, thereby demonstrating both the power and generalizability of the proposed system.Originality/valueMost DNA-BP methods proposed in the literature are only validated on one (rarely two) datasets/tasks. In this work, the authors report the performance of our general-purpose DNA-BP system on four datasets representing different DNA-BP classification tasks. The excellent results of the proposed best classifier system demonstrate the power of the proposed approach. These results can now be used for baseline comparisons by other researchers in the field.

Publisher

Emerald

Subject

Computer Science Applications,Information Systems,Software

Reference81 articles.

1. An overview of the structures of protein–DNA complexes;Genome Biol,2000

2. The Universal Protein Resource (UniProt): an expanding universe of protein information;Nucleic Acids Res,2006

3. Xiong Y, Zhu X, Dai H, Wei DQ. Survey of computational approaches for prediction of dna-binding residues on protein surfaces. In: Huang T. (ed). Computational systems Biology: methods in molecular Biology, 1754. New York, NY: Humana Press; 2018.

4. Protein modeling: what happened to the “protein structure gap”?;Structure,2013

5. Prediction of protein cellular attributes using pseudo-amino acid composition;Proteins: Struct Func Genet,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DNA-binding protein prediction based on deep transfer learning;Mathematical Biosciences and Engineering;2022

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3