Influence of interlayer dwell time on stress field of thin-walled components in WAAM via numerical simulation and experimental tests

Author:

Li Rong,Xiong Jun

Abstract

Purpose This paper aims to study the residual stress of deposited components which is a main issue to impede the widespread application of wire and arc additive manufacturing (WAAM). The interlayer dwell time is believed to have an effect on residual stress distributions in WAAM due to variance in heat dissipation condition. A coupled thermomechanical finite element model was established to evaluate the role of dwell time in between layers on the mechanical behavior of thin-walled components in WAAM, mainly involving thermal stress evolutions and residual stress distributions of the component and substrate. Design/methodology/approach Four interlayer dwell times including 0, 120 and 300 s and cooling to ambient temperature were selected in finite element modeling, and corresponding experiments were conducted to verify the reliability of the model. Findings The results show that with the interlayer dwell time, the stress cycling curves become more uniform and the interlayer stress-releasing effect is weakened. The residual stress levels on the substrate decrease with the increasing interlayer dwell time. In the outside surface of the component, the distributions of axial and longitudinal residual stress along the deposition path are the smoothest when the interlayer dwell time is cooling to ambient temperature. In the inside surface, a longer interlayer dwell time leads to an obvious decrease in the longitudinal and axial residual stress along the deposition path. Originality/value The comprehensive study of how the interlayer dwell time influences stress field of components is helpful to improve the deposition defects generated by WAAM.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference22 articles.

1. Numerical simulation to study the effect of tack welds and root gap on welding deformations and residual stresses of a pipe-flange joint;International Journal of Pressure Vessels and Piping,2005

2. Assessing the effect of TIG alternating current time cycle on aluminium wire + arc additive manufacture;Additive Manufacturing,2017

3. A computationally efficient finite element model of wire and arc additive manufacture;The International Journal of Advanced Manufacturing Technology,2014

4. Optimization of wire feed for GTAW based additive manufacturing;Journal of Materials Processing Technology,2017

5. A new finite element model for welding heat sources;Metallurgical Transactions B,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3