Author:
Siavashi Majid,Iranmehr Shirzad
Abstract
Purpose
The purpose of this study is to analyze a new idea for external flow over a cylinder to increase the heat transfer and reduce pressure drop. Using wedge-shaped porous media in the front and wake regions of the cylinder can improve its hydrodynamic, and the rotating flow in the wake region can enhance the heat transfer with increased porous–liquid contact. Permeability plays a vital role, as a high-permeable medium improves heat transfer, whereas a low-permeable region improves the hydrodynamic.
Design/methodology/approach
Therefore, in the current research, external forced convection of nanofluid laminar flow over a bundle of cylinders is simulated using a two-phase mixture model. Four cases with different porous blocks around the cylinder are assessed: rectangular porous; wedge shape in trailing edge (TEP); wedge shape in leading and trailing edges (LTEP); and no porous block case. Also, three different lengths of wedge-shaped regions are considered for TEP and LTEP cases.
Findings
Results are presented in terms of Nusselt (Nu), Euler (Eu) and the performance evaluation criterion (PEC) numbers for various Reynolds (Re) and Darcy (Da) numbers.
Originality/value
It was found that in most situations, LTEP case provides the highest Nu and PEC values. Also, optimal Re and porous medium length exist to maximize PEC, depending on the values of Da and nanofluid volume fraction.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献