Zinc oxide nanoparticles decrease acrylamide cytotoxicity and oxidative stress in HepG2 cells

Author:

Reihani Amin,Shaki Fatemeh,Azari Ala

Abstract

Purpose Acrylamide (AA) is predominantly used as a synthetic substance within various industries. However, AA is also recognized as a carcinogen. Zinc oxide nanoparticles (ZnO-NPs) are becoming increasingly attractive as medical agents. However, to the knowledge, the effects of ZnO-NPs on preventing cytotoxicity with AA have not been reported. Therefore, this study aims to determine the protective effects of ZnO-NPs against the cytotoxicity caused by AA. Design/methodology/approach MTT assay was used to determine the cytotoxicity. Reactive oxygen species (ROS) formation, carbonyl protein, malondialdehyde (MDA) and glutathione (GSH) were measured and analyzed statistically. Findings The findings observed that the presence of 200 µM AA led to a substantial reduction in cell viability (p < 0.001). However, ZnO-NPs restored cell viability at 50 and 100 µM concentrations (p = 0.0121 and p = 0.0011, respectively). The levels of ROS were significantly reduced (p = 0.001 and p = < 0.001) to 518 ± 47.57 and 364 ± 47.79, respectively, compared to the AA group. The levels of GSH were significantly increased (p = 0.004 and p = 0.002) to 16.9 ± 1.3 and 17.6 ± 0.5, respectively, compared to the AA group. The levels of MDA were significantly decreased (p = 0.005, p < 0.001 and p < 0.001) when compared to the AA group, as were the levels of carbonyl protein (p = 0.009 and p < 0.002) in comparison to the AA group. Originality/value In summary, the outcomes of this research indicate that ZnO-NPs played a role in inhibiting AA-induced oxidative stress and cytotoxicity.

Publisher

Emerald

Subject

Nutrition and Dietetics,Food Science

Reference48 articles.

1. Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles;International Journal of Nanomedicine,2013

2. Acrylamide removal from heated foods;Food Chemistry,2010

3. Evaluation of serum metallothionein-1, selenium, zinc, and copper in Ghanaian type 2 diabetes mellitus patients;International Journal of Diabetes in Developing Countries,2013

4. Acrylamide toxicity in isolated rat hepatocytes;Toxicology in Vitro,1998

5. Effects of glutamine on hydrogen peroxide-induced oxidative damage in intestinal epithelial cells of Jian carp (Cyprinus carpio var. Jian);Aquaculture,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3