Motion capture sensing techniques used in human upper limb motion: a review

Author:

Yahya Muhammad,Shah Jawad Ali,Kadir Kushsairy Abdul,Yusof Zulkhairi M.,Khan Sheroz,Warsi Arif

Abstract

Purpose Motion capture system (MoCap) has been used in measuring the human body segments in several applications including film special effects, health care, outer-space and under-water navigation systems, sea-water exploration pursuits, human machine interaction and learning software to help teachers of sign language. The purpose of this paper is to help the researchers to select specific MoCap system for various applications and the development of new algorithms related to upper limb motion. Design/methodology/approach This paper provides an overview of different sensors used in MoCap and techniques used for estimating human upper limb motion. Findings The existing MoCaps suffer from several issues depending on the type of MoCap used. These issues include drifting and placement of Inertial sensors, occlusion and jitters in Kinect, noise in electromyography signals and the requirement of a well-structured, calibrated environment and time-consuming task of placing markers in multiple camera systems. Originality/value This paper outlines the issues and challenges in MoCaps for measuring human upper limb motion and provides an overview on the techniques to overcome these issues and challenges.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference51 articles.

1. Human arm motion tracking by orientation-based fusion of inertial sensors and Kinect using unscented Kalman filter;Journal of Biomechanical Engineering,2016

2. Quantitative assessment of upper limb motion in neurorehabilitation utilizing inertial sensors;IEEE Transactions on Neural Systems and Rehabilitation Engineering,2015

3. Recognizing upper limb movements with wrist worn inertial sensors using k-means clustering classification;Human Movement Science,2015

4. Vision based games for upper-limb stroke rehabilitation,2008

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3