Quantification of free convection within a hemispherical annulus through a porous medium saturated by water-copper nanofluid

Author:

Baïri Abderrahmane,Suresh Nagaraj,Gayathri Palanisamy,Nithyadevi Nagarajan,Abimanyu Purusothaman

Abstract

Purpose A porous medium saturated with a nanofluid based on pure water and copper nanoparticles is used for cooling a hemispherical electronic device contained in an annulus space. The disc of the cavity could be inclined at an angle ranging from 0 ° (horizontal disc with dome facing upwards) to 180° (horizontal disc with dome facing downwards). The important surface heat flux generated by the dome leads to high Rayleigh number values reaching 7.29 × 10^10. The purpose of this work is to examine the influence of the nanofluid saturated porous medium on the free convective heat transfer. Design/methodology/approach Heat transfer occurring between this active component and the isothermal passive cupola is quantified by means of a three-dimensional numerical study using the control volume method associated to the SIMPLE algorithm. Findings The work shows that heat transfer in the annulus space is improved by interposing a porous medium saturated with the water-copper nanofluid. Originality/value New correlation is proposed to calculate the Nusselt number for any combination of the inclination angle, the fraction volume, the Rayleigh number and the ratio between the thermal conductivities of the porous medium and the fluid. The wide ranges corresponding to these parameters allow the thermal design of this electronic equipment for various configurations.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference27 articles.

1. Effects of variable viscosity and thermal conductivity of CuO-Water nanofluid on heat transfer enhancement in natural convection: mathematical model and simulation;Journal of Heat Transfer,2010

2. Natural convective heat transfer in the air-filled interstice between inclined concentric hemispheres: application to thermoregulation in electronics;International Journal of Numerical Methods for Heat and Fluid Flow,2017

3. On the nusselt number definition adapted to natural convection in parallelogramic cavities;Applied Thermal Engineering,2008

4. Transient thermal characteristics of airborne electronic equipment with discrete hot bands in a confined environment;Applied Energy,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3