Design a degradation condition monitoring system scheme for rolling bearing using EMD and PCA

Author:

Wu Jun,Wu Chaoyong,Lv Yaqiong,Deng Chao,Shao Xinyu

Abstract

Purpose Rolling bearings based on rotating machinery are one of the most widely used in industrial applications because of their low cost, high performance and robustness. The purpose of this paper is to describe how to identify degradation condition of rolling bearing and predict its fault time in big data environment in order to achieve zero downtime performance and preventive maintenance for the rolling bearing. Design/methodology/approach The degradation characteristic parameters of rolling bearings including intrinsic mode energy and failure frequency were, respectively, extracted from the pre-processed original vibration signals using EMD and Hilbert transform. Then, Spearman’s rank correlation coefficient and PCA were used to obtain the health index of the rolling bearing so as to detect the appearance of degradations. Furthermore, the degradation condition of the rolling bearings might be identified through implementing the monotonicity analysis, robustness analysis and degradation analysis of the health index. Findings The effectiveness of the proposed method is verified by a case study. The result shows that the proposed method can be applied to monitor the degradation condition of the rolling bearings in industrial application. Research limitations/implications Further experiment remains to be done so as to validate the effectiveness of the proposed method using Apache Hadoop when massive sensor data are available. Practical implications The paper proposes a methodology for rolling bearing condition monitoring representing the steps that need to be followed. Real-time sensor data are utilized to find the degradation characteristics. Originality/value The result of the work presented in this paper form the basis for the software development and implementation of condition monitoring system for rolling bearings based on Hadoop.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

Reference26 articles.

1. Fault detection of a roller-bearing system through the EMD of a wavelet denoised signal;Sensors,2014

2. A proactive decision making framework for condition-based maintenance;Industrial Management & Data Systems,2015

3. Remaining useful life estimation based on nonlinear feature reduction and support vector regression;Engineering Applications of Artificial Intelligence,2013

4. Fault prognostic of bearings by using support vector data description,2012

5. Feature evaluation for effective bearing prognostics;Quality & Reliability Engineering,2013

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3