Fluid flow and heat transfer for a particle-laden gas modeled as a two-phase turbulent flow

Author:

Gorman John,Sparrow Eph

Abstract

Purpose The purpose of this study is to examine the physical processes experienced by a particle-laden gas due to various types of collisions, different heat transfer modalities and jet axis switching. Here, attention is focused on a particle-laden gas subjected to jet axis switching while experiencing fluid flow and heat transfer. Design/methodology/approach The methodology used to model and solve these complex problems is numerical simulation treated here as a two-phase turbulent flow in which the gas and the particles keep their separate identities. For the turbulent flow model, validation was achieved by comparisons with appropriate experimental data. The considered interactions between the fluid and the particles include one-way fluid–particle interactions, two-way fluid–particle interactions and particle–particle interactions. Findings For the fluid flow portion of the work, emphasis was placed on the particle collection efficiency and on independent variables that affect this quantity and the trajectories of the fluid and of the particles as they traverse the space between the jet orifice and the impingement plate. The extent of the effect depended on four factors: particle size, particle density, number of particles and the velocity of the fluid flow. The major effect on the heat transferred to the impingement plate occurred when direct heat transfer between the impinging particles and the plate was taken into account. Originality/value This paper deals with issues never before dealt with in the published literature: the effect of jet axis switching on the fluid mechanics of gas-particle flows without heat transfer and the effect of jet axis switching and the presence of particles on jet impingement heat transfer. The overall focus of the work is on the impact of jet axis switching on particle-laden fluid flow and heat transfer.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference31 articles.

1. Investigation of impingement heat transfer for air‐sand mixture flow;The Canadian Journal of Chemical Engineering,2016

2. Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach;International Journal of Heat and Fluid Flow,2007

3. A numerical study of the unsteady flow and heat transfer in a transitional confined slot jet impinging on an isothermal surface;International Journal of Heat and Mass Transfer,2002

4. Measurements of skin friction and heat transfer beneath an impinging slot jet;Experimental Thermal and Fluid Science,2015

5. Heat transfer characteristics of impinging two-dimensional air jets;Journal of Heat Transfer,1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3