Multi-objective design optimisation of steel framed structures using three different methods

Author:

Alkhadashi AbdalhakemORCID,Mohammad FouadORCID,Zubayr Rasheedah OlamideORCID,Aoun Klalib HyndaORCID,Balik PiotrORCID

Abstract

PurposeThe optimality objectives are the structure weight and embodied energy as well as calculating the cost and embodied carbon of the resulting optimum options. Three optimality algorithms developed in MATLAB, namely, genetic algorithms (GA), particle swarm optimisation (PSO) and harmony search algorithm (HSA), were used for structural optimisation to compare the effectiveness of the algorithms. Two life-cycle stages were considered, production and construction stages, which include three boundaries: materials, transportation and erection. In the formulation of the optimum design problem, 107 universal steel beams (UKB) and 64 columns (UKC) sections were considered for the discrete design variables. The imposed behavioural constraints in the optimum design process were set according to the provision of Eurocode 3 (EC3). The study aims to find the optimum solution of 2D steel frames whilst considering weight and embodied energy, investigate the performance of the analysis integrated with MATLAB and provide three examples to which all these are applied to.Design/methodology/approachUndoubtedly, in structural engineering, the best design of any structure aims at the most economical and environmental option, without impairing the functional and its structural integrity. In the paper, multi-objective stochastic search methods are proposed for optimum design of three two-dimensional multi-story frames.FindingsResults showed that the optimised designs obtained by HSA are better than those found by the GA and PSO with an average difference of 16% from GA and PSO, where this difference increases at larger frame structures. It was, therefore, concluded that the integration of the analysis, design and optimisation methods employed in MATLAB can be effective in obtaining prompt optimum results during the decision-making stage.Research limitations/implicationsThere may be some possible limitations in the study. Due to the time constraints, only three meta-heuristic approaches were investigated, where more methods should be investigated to fully understand their effectiveness in multi-objective problems.Originality/valueInvestigating the performance of three optimisation methods in multi-objective problems developed in MATLAB. More importantly, developing optimisation models for evaluation of embodied energy, embodied carbon and cost for steel structures to assist designers, during the initial stages, to evaluate design decisions against their energy consumption and carbon impacts.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference41 articles.

1. Optimum design of steel space frames by artificial bee colony algorithm;10th International Congress on Advances in Civil Engineering,2012

2. Multi-objective optimization of structural steel buildings under earthquake loads using NSGA-II and PS;KSCE Journal of Civil Engineering,2017

3. Multi-stage production cost optimization of semi-rigid steel frames using genetic algorithms;Engineering Structures,2009

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3