Fatigue damage analysis of steel components subjected to earthquake loadings

Author:

Hou Chien-Yuan,Lee Yung-Feng,Peng Yen-Hao

Abstract

PurposeExamination of steel moment resisting frames after the 1994 Northridge earthquake showed fatigue cracks presented in the beam–column connections of the frames. These observations indicate that fatigue failure may occur in the steel components of building structures in an earthquake event. To apply the fatigue design approach using the Palmgren–Miner’s rule for steel components of the moment resisting frames requires the knowledge regarding the damage index value at fatigue failure. The purpose of this paper is to perform fatigue tests to give the first damage values of steel components subjected to real earthquake-induced loadings.Design/methodology/approachThe added-damping-and-stiffness steel plates which are used in building structures for earthquake mitigation were fabricated and tested by constant amplitude, SAC block and earthquake-induced loadings to failure. The earthquake loadings were obtained from the dynamic analysis of a steel frame with the mentioned plates. The load cycles of the SAC block and the calculated earthquake loadings were counted using the rainflow-counting method, and the damage index value of each specimen were calculated using the Palmgren–Miner’s rule.FindingsReverse stiffness obtained from cyclic load-displacement loops is a robust and consistent parameter that can be used for determining fatigue failure of tested components. The Palmgren–Miner’s damage values at failure, caused by earthquake loadings, are smaller than 1, and in addition, are also smaller than those obtained from the tests of the SAC block loading. The large-amplitude cycles in the earthquake loading produce large damage on the specimens, and intermediate range cycles also produce damage that should not be neglected in the fatigue analysis.Originality/valueToday’s building design code allows large plastic deformation to occur in steel frames during an earthquake. However, the pre-Northridge earthquake steel frames showed fatigue cracks without the expected substantial plastic deformation at beam flanges. Proposed solutions to this problem were the reduced beam section neglecting the existence of the cracks at beam–column connections. This study considered the fatigue phenomenon in steel frames and provided the first set of tested fatigue damage values for steel components subjected to realistic earthquake loadings, which offered a possible method of dealing with fatigue cracks in the steel components of a building structure.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference29 articles.

1. ASTM (2017), “Standard practices for cycle counting in fatigue analysis”, ASTM Standard E-1049, available at: www.astm.org/Standards/E1049.htm (accessed January 15, 2019).

2. Energy-based damage index for steel structures;Steel and Composite Structures,2010

3. A model for predicting the failure of structural steel elements;Journal of Constructional Steel Research,1989

4. Failure criteria and cumulative damage models for steel components under cyclic loading;Journal of Constructional Steel Research,2009

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3