Development of a smart wing

Author:

Hutapea Parsaoran,Kim Jinho,Guion Andrew,Hanna Charlie,Heulitt Noah

Abstract

PurposeThe objective of this paper is to develop an actuation system utilizing smart materials such as shape memory alloys (SMA) to control the position of an aircraft's flaps.Design/methodology/approachThe proposed smart wing consisted of SMA springs that were fixed at one end to the wing box toward the leading edge of the airfoil. The other end of each spring was attached tangentially to a rotating cylinder fixed to the flap. The springs were arranged in an upper and a lower layer to cause rotation of the flap in both the upward and downward directions. The spring actuators were controlled by the introduction of heat resulting from the applied current. A prototype of the smart wing was developed and tested to demonstrate the design concept.FindingsA prototype of a smart actuation system for controlling the flaps of an aircraft was successfully developed. Through the experimental and theoretical analyses conducted, the design was validated and showed strong potential for future application.Practical implicationsThe proposed concept can be applied to other aircraft systems such as ailerons, slats, rudders and elevators.Originality/valueThe prototype of a smart wing is unique. It utilizes smart materials for aircraft flap actuation. The concept can be applied on ailerons, slats, rudders and elevators.

Publisher

Emerald

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3