Reliability analysis of various modeling techniques for the prediction of axial strain of FRP-confined concrete

Author:

Elhag Ahmed Babeker,Raza AliORCID,Kahla Nabil Ben,Arshad MuhammedORCID

Abstract

PurposeThe external confinement provided by the fiber-reinforced polymer (FRP) sheets leads to an improvement in the axial compressive strength (CS) and strain of reinforced concrete structural members. Many studies have proposed analytical models to predict the axial CS of concrete structural members, but the predictions for the axial compressive strain still need more investigation because the previous strain models are not accurate enough. Moreover, the previous strain models were proposed using small and noisy databases using simple modeling techniques. Therefore, a rigorous approach is needed to propose a more accurate strain model and compare its predictions with the previous models.Design/methodology/approachThe present work has endeavored to propose strain models for FRP-confined concrete members using three different techniques: analytical modeling, artificial neural network (ANN) modeling and finite element analysis (FEA) modeling based on a large database consisting of 570 sample points.FindingsThe assessment of the previous models using some statistical parameters revealed that the estimates of the newly recommended models were more accurate than the previous models. The estimates of the new models were validated using the experimental outcomes of compressive members confined with carbon-fiber-reinforced polymer (CFRP) wraps. The nonlinear FEA of the tested samples was performed using ABAQUS, and its estimates were equated with the calculations of the analytical and ANN models. The relative investigation of the estimates solidly substantiates the accuracy and applicability of the recommended analytical, ANN and FEA models for predicting the axial strain of CFRP-confined concrete compression members.Originality/valueThe research introduces innovative methods for understanding FRP confinement in concrete, presenting new models to estimate axial compressive strains. Utilizing a database of 570 experimental samples, the study employs ANNs and regression analysis to develop these models. Existing models for FRP-confined concrete's axial strains are also assessed using this database. Validation involves testing 18 cylindrical specimens confined with CFRP wraps and FE simulations using a concrete-damaged plastic (CDP) model. A comprehensive comparative analysis compares experimental results with estimates from ANNs, analytical and finite element models (FEMs), offering valuable insights and predictive tools for FRP confinement in concrete.

Publisher

Emerald

Reference56 articles.

1. ACI-440.2R-02, guide for the design and construction of externally bonded FRP systems for strengthening concrete structures;Reported by ACI Committee,2002

2. Reliability analysis of strength models for CFRP-confined concrete cylinders;Composite Structures,2020

3. Reliability analysis of strength models for CFRP-confined concrete cylinders;Composite Structures,2020

4. Constitutive behavior and finite element analysis of FRP composite and concrete members;Materials,2013

5. Prediction of load–displacement curve of concrete reinforced by composite fibers (steel and polymeric) using artificial neural network;Expert Systems with Applications,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3